
Reversing Along a Curved Path by an
Autonomous Truck–Semitrailer Combination
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Abstract. In this paper, the stability analysis of the reverse motion
along a circular path is presented for the truck–semitrailer combination.
The dynamics of the low-speed manoeuvre are investigated with the sin-
gle track kinematic model, supplemented with the model of the steering
system. The time delay emerging in the control loop is also considered.
The actuation is achieved by the steering of the truck, for which a lin-
ear feedback controller is designed to ensure the stability of the motion,
meanwhile, a geometry-based feedforward steering angle is also used to
force the system to the desired path. Linear stability charts are calcu-
lated in order to properly tune the control gains of the feedback controller
with respect to the curvature of the path.
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1 Introduction

Self-driving vehicles could help society in several ways: they may make trans-
portation safer, may reduce fuel consumption, and may improve the comfort of
passengers. In freight transportation, self-driving of trucks, which are equipped
with at least one trailer, generates different problems compared to a single pas-
senger car [1].

One magnificent task to solve with automated delivery vehicles could be
handling long convoys with only one human driver in the front, significantly
reducing air resistance for the entire convoy. On the other hand, self-driving
features make possible and improve the realization of complicated maneuvers.
For example, the slow-speed reversing motion is a challenging task for drivers due
to the instability of this motion that can also lead to the so-called Jackknifing
phenomenon [2] in the worst case. However, reversing is unavoidable even for
vehicle systems equipped with more than one trailer [3–5]. In this topic, some
driver assistance systems (DAS) are already available, even with human input,
where the controller helps the driver to follow the desired path and stabilizes the
motion [6]. These features could be useful mostly in the loading bays. Docking
maneuver in the loading bay is one of the most difficult and time-consuming tasks
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of a truck driver [7]. Therefore, installing a fully autonomous control system in
the area could save time and money for the companies and reduce accidents
during loading.

In this paper, we analyze the dynamics of the truck–semitrailer combination,
which is the most common vehicle type for freight transport worldwide. Based on
previous research, a single track kinematic model supplemented by the steering
dynamics is presented. The relevance of considering the steering mechanism is
shown as well. Applying a coordinate transformation on the equations of motion
enables the examination of the general path-following control; however, at this
point, the curvature of the path is assumed to be a constant value. The purpose
of this paper is to apply a simple linear feedback control for stabilizing the reverse
motion of the truck–semitrailer along a circular path and to observe the effect
of the curvature on stability. As a major contribution, the effect of time delay
in the control loop is also considered in order to make the results more realistic.
Then, linear stability charts are constructed from which the control gains can
be tuned according to the desired curvature values. This method is also helpful
in path designing for different trailer configurations. Nonlinear simulations show
the performance of the controller designed by means of the stability analysis.

2 Mechanical model

The single track kinematic model of the truck–semitrailer is shown in Fig. 1.
The vehicle system is modeled by two rods, neglecting the lateral extent of the
vehicle. These rods represent the chassis of the truck and the semitrailer, which
are connected at the kingpin K. The rigid wheels of the single track vehicle model
are located at points F and R for the truck and at point T for the semitrailer.
The wheelbase is referred to l, the distance of the kingpin and the rear axle of
the truck is denoted by a; l2 is the distance between the kingpin and the axle
of the semitrailer, see Fig. 1. The steering angle δ refers to the only actuated
variable of the vehicle system, xR, yR, ψ and φ are used to express the position
of the truck, and the trailer. Namely, xR and yR are the coordinates of point R,
the absolute yaw angle of the truck is denoted by ψ, while the yaw angle of the
trailer relative to the truck’s longitudinal axis is φ.

2.1 Equations of motion

The equations of motion are rooted in the kinematic constraints of the rolling
rigid wheels, which ensure that the velocity vector of each axle at F, R, and
T points are parallel to the proper wheel plane, i.e., perpendicular to the axle
itself. Another kinematic constraint is also considered, namely, the longitudinal
speed of the truck’s rear axle is kept at the constant value V . After rearranging
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Fig. 1: Mechanical model of the truck–semitrailer

the constraining equations, they read

ẋR = V cosψ, ẏR = V sinψ, ψ̇ =
V

l
tan δ,

φ̇ = − V

ll2

(
l sinφ+ (l2 + a cosφ2) tan δ

)
.

(1)

Besides the higher-level controller, which will be introduced in Section 3, there
is a lower-level controller in the model for operating the steering of the vehicle.
Thus, the dynamics of the steering system is described by

δ̇ = ω, ω̇ = −p(δ − δdes)− dω. (2)

Here, δdes denotes the desired steering angle, which is determined by the higher-
level controller. The steering rate is denoted by ω, i.e., (2) refers to the PD-
controlled one degree-of-freedom steering mechanism. The notations p and d are
the proportional and the derivative gains of the lower-level controller. An alter-
native modeling approach is the use of direct assignment of the steering angle,
however, taking the dynamics of the steering mechanism into account results
quantitatively different stability charts, as it will be shown in Subsection 4.2.

2.2 Path-following

In order to obtain the governing equations for investigating the path-following
control, there are two more steps left. The most obvious point of the vehicle sys-
tem to be prescribed to follow the path in reverse motion is the axle of the trailer
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(T). So, first, the position of the trailer’s axle (point T) in the (X,Y ) ground-
fixed coordinate system has to be determined as a function of the generalized
coordinates xR, yR, ψ and φ. On the other hand, a coordinate transformation
is needed to the path-reference frame (see [8] for details), where the system is
described by the state vector:

x =
[
sD eD ΘD ψ φ δ ω

]T
, (3)

where the first three components refer to the path-following problem (see Fig. 1).
The index D refers to the closest point to T along the path, sD is the arclength
along the path, eD (lateral deviation) is the distance between the points T and
D, and ΘD = ψ + φ − ψD is the angle of the trailer relative to the path. The
curvature of the path at point D is marked with κD. In general, the curvature
κD(sD) can depend on the arclength, but in this study, it is assumed to be
constant, which implies a circular path.

Finally, the governing equations can be obtained as follows

ṡD =
V

1− κDeD

(
cos (ΘD − φ) +

a

l
tan δ sin (ΘD − φ)

)
− V

1− κDeD

(
sinφ+

a

l
cosφ tan δ

)
sinΘD ,

(4)

ėD = V
(
sin (ΘD − φ)− a

l
tan δ cos (ΘD − φ)

)
+ V

(
sinφ+

a

l
cosφ tan δ

)
cosΘD ,

(5)

Θ̇D = ψ̇ + φ̇− κDṡD, (6)

ψ̇ =
V

l
tan δ , (7)

φ̇ = − V

ll2

(
l sinφ+ (l2 + a cosφ) tan δ

)
, (8)

δ̇ = ω, (9)

ω̇ = −pδ − dω + pδdes . (10)

It is worth mentioning that the right hand side of Eq. (6) can be substituted by
(4), (7) and (8), which are not accomplished here to reduce the complexity of
the formulas. However, using the state vector (3), Eqs. (4)–(10) can be given in
the affine form

ẋ = f(x) + g(x)u , (11)

where the input u refers to the desired steering angle δdes.

3 Control algorithm

In order to keep the system on the desired path, a higher-level controller is
introduced that determines the desired steering angle (the input of the controlled
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Fig. 2: Geometry aspect of feedforward steering angle δff and equilibria of the
relative yaw angle φ⋆ of the trailer

vehicle system). Namely:

δdes(t) = δff + δfb(t), (12)

where the curvature-dependent feedforward term is denoted by δff , while the
feedback term δfb is based on the state variables.

The value of the feedforward steering angle can be calculated by solving
the equations of motion Eqs. (6) and (8) for the steady state solution (circular
motion). This solution can also be determined based on geometrical approach
shown in Fig. 2. Starting from the curvature, the feedforward term can be given
as

δff = arctan
l√

l22 + 1/κ2D − a2
. (13)

To ensure the stability of the reverse motion, the linear feedback δfb is de-
signed with three proportional terms:

δfb(t) = −PeeD(t− τ)− PΘΘD(t− τ)− Pφ (φ(t− τ)− φ⋆) , (14)

where τ is the time delay that is primarily rooted in sensor data processing and
control algorithm execution that can be relevant even in the case of autonomous
vehicles. The angle φ⋆ in Eq. (14) is the yaw angle of the trailer relative to the
truck in steady state condition, which can be calculated based on the geometric
approach (see Fig. 2):

φ⋆ = −

(
π − arctan

1

κDl2
− arccos

a√
l22 + 1/κ2D

)
. (15)
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4 Stability analysis

The main results of our analysis are manifested in stability charts, by which
the effects of different parameters on the linear stability can be investigated.
Probably the most critical parameters are the gains of the feedback controller
while assuming a vehicle combination with fixed geometry. Beyond the effect of
the control gains, our research also focuses on the effect of path curvature.

4.1 Linearization

This paper presents a linear stability analysis of the reverse circular motion.
Accordingly, the linearized form of the governing equations (4)–(10) is needed.
More precisely, the equation related to the arclength Eq. (4) can be eliminated
because the stability of the motion is independent of this variable in the lin-
ear sense, so as Eq. (7). Hence, the steady state solution, around which the
linearization is accomplished, reads

x⋆ =
[
e⋆D Θ⋆

D φ⋆ δ⋆ ω⋆
]T

=
[
0 0 φ⋆ δff 0

]T
. (16)

As introducing a perturbation x̃ and ũ, so that

x(t) = x⋆ + x̃(t), u(t) = u⋆ + ũ(t), (17)

let us obtain the linear state space representation in the form of

˙̃x(t) = A x̃(t) +B ũ(t− τ). (18)

In the Jacobian linearization above, A is the system matrix, B is the input
matrix (in this case a vector), and u =

[
δdes

]
indicates the control input vector

(in this case a scalar). These matrices can be determined by

A =
∂f

∂x

∣∣∣∣
x⋆

and B = g(x⋆), (19)

which reads as follows

A =



0 v 0 0 0

−vκ2D 0 V κD

(
sinφ⋆ +

a

l
tan δff cosφ⋆

)
− v

l2
r (cosφ⋆ − κDl2 sinφ

⋆) 0

0 0 − v

l2
r

(
cosφ⋆ +

l2
a

)
0

0 0 0 0 1
0 0 0 −p −d


(20)

B =
[
0 0 0 0 p

]T
, (21)
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where:

v :=
V

l
(l cosφ⋆ − a sinφ⋆ tan δff) , (22)

r := − V a

ll2 cos2 δff
. (23)

Based on the system matrix A and the control input vector B, the controllability
of the system can be checked, which condition is fulfilled for our system.

4.2 Effect of curvature

In this subsection, the semi-discretization method [9] is applied to investigate
the stability of the controlled reverse motion. Stability charts are generated in
the PΘ − Pφ plane, meanwhile, we fixed the control gain of the lateral error to
Pe = −5 rad/m. In order to analyze the effect of curvature on stability, the
time delay is also fixed, namely, we consider τ = 0.1 s. All the other required
geometrical and control parameters are listed in Table 1.

In Fig. 3 (a), linearly stable control gain domains are depicted by blue colors.
Different shades of blue refer to different curvature values, as labeled on the
chart. Cyan dots denote the most stable gain configuration for the different
curvatures, i.e., the smallest real part of the rightmost eigenvalue is ensured at
these points. On the one hand, as it is shown by the figure, the reverse circular
motion can be stabilized even in the case of a path with relatively small turning
radius (reciprocal of curvature) if the control gains are correctly set. On the
other hand, tuning the control gains is a crucial task to achieve stability for
very different path curvatures. For example, even the most stable gain setup for
κD = 0.1m−1 is located outside the stable domain for κD = 0.2m−1.

A comparison with the assigned steering angle case is shown in panel (b),
where the curvature values are the same as in panel (a). As shown, the assigned
steering angle approach results unrealistically large stable areas (bordered by
dashed lines), which demonstrates the importance of considering the steering
mechanism. However, the most stable gain setups of the assigned steering angle
case (marked with cyan crosses) are also located inside of the stable domain of
the stricter, steering mechanism case.

Table 1: Vehicle parameters applied in our analysis
Parameter Value Unit

V -3 m/s
a -0.8 m
l 3.5 m
l2 10 m
p 300 1/s2

d 34.6 1/s
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Fig. 3: (a) Stability charts for demonstrating the effect of curvature of the desired
path κD on stability (τ = 0.1 s). (b) Comparison of the steering mechanism and
the assigned steering angle cases.

5 Simulation

Simulations are carried out in order to verify the results. Time series graphs
are acquired by solving the nonlinear equations of motion Eq. (4)–(10), comple-
mented with the derivative of the truck’s rear axle position xR and yR in order
to track the trajectory of the truck–semitrailer in the (X,Y ) coordinate system.

The most stable gain configuration in the case of κD = 0.1m−1 is considered
(see parameter point P in Fig. 3), i.e., Pe = −5 rad/m, PΘ = 15 and Pφ = 5.5.
Simulations are done both for 0.1m−1 and 0.2m−1 curvature values in Figs. 4
and 5, respectively. Initially, the truck–semitrailer combination is set in a position
and orientation that corresponds to eD = 0.1 m, ΘD = 0, φ = φ⋆, δ = δff , ω = 0,
xR = 0, yR = 0 and ψ = 0. The initial and final positions and orientations
are illustrated by black and red colors, respectively. The outer and inner blue
curves are the path of the truck’s rear axle (point R) and the trailer’s axle (point
T), respectively. Furthermore, the desired circular path of the trailer’s axle is
denoted by magenta dashed line, which infers an insignificant difference between
the desired and the realized path of the trailer’s axle (point T). Note that an
initial perturbation was applied in the lateral position.

Time histories of state variables can be seen on the left panels of Figs. 4
and 5. It can be seen that while the path following is stable for the smaller
curvature, the simulation ends with jackknifing for the larger curvature, i.e., the
path following is unstable. This proves the importance of proper gain tuning;
thus, different gains must be set according to the curvature of the path. On the
right panels of Figs. 4 and 5, trajectories are plotted to visualize the stable and
unstable nature of the motion.
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Fig. 4: Simulation results of the stable motion (κD = 0.1)

Fig. 5: Simulation results of the unstable motion (κD = 0.2) with the jackknifing
phenomenon on the right

6 Conclusion

It was introduced that the naturally unstable reverse motion of a truck–semitrailer
can be stabilized along a circular path even in the presence of significant time
delay. A control algorithm was designed to realize the stabilization and keep
the vehicle system on the desired and prescribed path. Moreover, the kinematic
model was supplemented with the steering dynamics. It was shown that the
steering dynamics has a relevant role in the proper tuning of the controller. It
has been proven that the path-following problem can be solved for constant cur-
vature, but the control gains must be tuned according to the curvature value.
The results were verified by nonlinear simulations, which also helped to visu-
alize the stable and unstable nature of the motion, as well as to observe the
jackknifing phenomenon.
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Detailed parameter analysis can be investigated in the future. The value of
the critical time delay, for which the reverse motion cannot be stabilized, can
also be calculated as a function of the reversing speed. Moreover, some scenarios
of exact commercial trailer types should be set. These steps would allow us to
validate the results by experimental tests on small-scale equipment or even in a
real environment. Another helpful feature could be extending the path-following
control to a general case when the curvature varies along the prescribed path
(e.g., along a clothoid). The varying curvature probably causes the need for
adaptive control gain tuning.

Acknowledgement

The research reported in this paper was partly supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences and by the National
Research, Development and Innovation Office under grant no. NKFI-128422 and
under grant no. 2020-1.2.4- TÉT-IPARI-2021-00012.
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